Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ibrahim Baba, ${ }^{\text {a }}$ Sukeria Ibrahim, ${ }^{\text {a }}$ Yang Farina, ${ }^{a}$ A. Hamid Othman, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {b }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\text {c }}$ *

${ }^{\text {a }}$ School of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathrm{c}}$ Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail:
h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.026$
$w R$ factor $=0.054$
Data-to-parameter ratio $=38.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(N-cyclohexyl- N-methyldithiocarbamato-S)antimony(III)

In the title compound, $\left[\mathrm{Sb}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{3}\right]$, the dithiocarbamate groups chelate to the Sb atom in an anisobidentate manner $[\mathrm{Sb}-\mathrm{S}=2.530$ (1) and 2.975 (1) \AA]. The Sb atom lies on a threefold axis and the lone pair is also stereochemically active.

Comment

The electron lone-pair is stereochemically active in antimony(III) and bismuth(III) tri(diethyldithiocarbamates); the dithiocarbamate group coordinates to metal atom in an anisobidentate manner and the covalent is shorter than the dative distance (Raston \& White, 1976). In the title compound, (I), the dithiocarbamate anions chelate to the Sb atom in an anisobidentate manner and the lone pair is also stereochemically active; the Sb atom exists in a distorted octahedral environment.

(I)

The conformation of the dithiocabamate ligand appears to be governed by two interactions [C2 \cdots S1 $=2.943$ (2) \AA and $\mathrm{C} 3 \cdots \mathrm{~S} 2=3.026(2) \AA$] that are characterized by $\mathrm{H} \cdots \mathrm{S}$ $[\mathrm{H} \cdots \mathrm{S} 1=2.40 \AA$ and $\mathrm{H} \cdots \mathrm{S} 2=2.53 \AA$] distances that significantly shorter than the sum of Pauling's van der Waals radii (3.05 Å).

Experimental

An ethanol solution of carbon disulfide was added to a solution of cyclohexylmethylamine in ethanol at 277 K followed by an aqueous solution of concentrated ammonia. The solid ammonium dithiocarbamate was isolated and this was reacted with antimony(III) trichloride in ethanol ($3 / 1$ molar stoichiometry) at 277 K . The solid product was collected and recrystallized from ethanol (m.p. 483484 K). Elemental analysis (calculated in parenthesis) for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{~S}_{6} \mathrm{Sb}$: C 42.07 (42.02), H 5.90 (6.12), N 6.15 (6.12), S 28.58% (28.01\%).

Received 4 December 2000 Accepted 12 December 2000 Online 22 December 2000

Figure 1
ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are shown as circles of arbitrary radii.

Crystal data

$\left[\mathrm{Sb}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NS}_{2}\right)_{3}\right]$
$M_{r}=686.72$
Hexagonal, $P 6_{3}$
$a=13.8948$ (4) \AA
$V=1586.19(8) \AA^{3}$
$Z=2$
$D_{x}=1.438 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Data collection

Siemens CCD area-detector	3970 independent reflections
\quad diffractometer	3486 reflections with $(I)>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.029$
Absorption correction: empirical	$\theta_{\max }=33.18^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$h=-19 \rightarrow 21$
$T_{\min }=0.504, T_{\max }=0.748$	$k=-21 \rightarrow 9$
14627 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0249 P)^{2}\right. \\
& +0.0788 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\mathrm{m}} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack \& } \\
& \text { Schwarzenbach (1988) } \\
& \text { Flack parameter }=-0.02(1)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

Sb1-S1	$2.530(1)$	$\mathrm{Sb} 1-\mathrm{S} 2$	$2.975(1)$
$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 1^{\mathrm{i}}$	$87.1(1)$	$\mathrm{S}^{\mathrm{i}}-\mathrm{Sb} 1-\mathrm{S} 2$	$150.3(1)$
$\mathrm{S} 1-\mathrm{Sb} 1-\mathrm{S} 2$	$64.7(1)$	$\mathrm{S}_{1}{ }^{\mathrm{ii}}-\mathrm{Sb} 1-\mathrm{S} 2$	$82.3(1)$
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Sb} 1-\mathrm{S} 1^{\mathrm{ii}}$	$87.1(1)$		
Symmetry codes: (i) $1-y, 1+x-y, z ;($ ii) $-x+y, 1-x, z$.			

Of the 3970 reflections, 2118 were unique reflections and 1582 were Friedel pairs.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Universiti Kebangsaan Malaysia and the National Science Council for R\&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662, 190-96092801), for supporting this work.

References

Flack, H. D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, ennessee, USA.
Raston, C. L. \& White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 791-794.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

