Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ibrahim Baba,^a Sukeria Ibrahim,^a Yang Farina,^a A. Hamid Othman,^a Ibrahim Abdul Razak,^b Hoong-Kun Fun^b and Seik Weng Ng^c*

^aSchool of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and CInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å R factor = 0.026 wR factor = 0.054 Data-to-parameter ratio = 38.2

For details of how these key indicators were automatically derived from the article, see http://iournals.jucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $[Sb(C_8H_{14}NS_2)_3]$, the dithiocarbamate groups chelate to the Sb atom in an anisobidentate manner [Sb-S = 2.530 (1) and 2.975 (1) Å]. The Sb atom lies on a threefold axis and the lone pair is also stereochemically active. Received 4 December 2000 Accepted 12 December 2000 Online 22 December 2000

Comment

The electron lone-pair is stereochemically active in antimony(III) and bismuth(III) tri(diethyldithiocarbamates); the dithiocarbamate group coordinates to metal atom in an anisobidentate manner and the covalent is shorter than the dative distance (Raston & White, 1976). In the title compound, (I), the dithiocarbamate anions chelate to the Sb atom in an anisobidentate manner and the lone pair is also stereochemically active; the Sb atom exists in a distorted octahedral environment.

The conformation of the dithiocabamate ligand appears to be governed by two interactions $[C2 \cdot \cdot \cdot S1 = 2.943 (2) \text{ Å and}$ $C3 \cdot \cdot \cdot S2 = 3.026 (2) \text{ Å}$ that are characterized by $H \cdot \cdot \cdot S$ $[H \cdot \cdot S1 = 2.40 \text{ Å and } H \cdot \cdot S2 = 2.53 \text{ Å}]$ distances that significantly shorter than the sum of Pauling's van der Waals radii (3.05 Å).

Experimental

An ethanol solution of carbon disulfide was added to a solution of cyclohexylmethylamine in ethanol at 277 K followed by an aqueous solution of concentrated ammonia. The solid ammonium dithiocarbamate was isolated and this was reacted with antimony(III) trichloride in ethanol (3/1 molar stoichiometry) at 277 K. The solid product was collected and recrystallized from ethanol (m.p. 483-484 K). Elemental analysis (calculated in parenthesis) for C₂₄H₄₂N₃S₆Sb: C 42.07 (42.02), H 5.90 (6.12), N 6.15 (6.12), S 28.58% (28.01%).

DOI: 101107/S1600536800020122

Figure 1

ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are shown as circles of arbitrary radii.

Crystal data

[Sb(C₈H₁₄NS₂)₃] $M_r = 686.72$ Hexagonal, P63 a = 13.8948 (4) ÅV = 1586.19 (8) Å² Z = 2 $D_x = 1.438 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Data collection

Siemens CCD area-detector diffractometer ω scans Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\rm min}=0.504,\ T_{\rm max}=0.748$ 14 627 measured reflections

Cell parameters from 8192 reflections $\theta = 2.7 - 33.2^{\circ}$ $\mu = 1.28~\mathrm{mm}^{-1}$ T = 298 (2) KBlock, yellow $0.62 \times 0.28 \times 0.24$ mm

3970 independent reflections
3486 reflections with $(I) > 2\sigma(I)$
$R_{\rm int} = 0.029$
$\theta_{\rm max} = 33.18^{\circ}$
$h = -19 \rightarrow 21$
$k = -21 \rightarrow 9$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0249P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 0.0788P]
$wR(F^2) = 0.054$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3970 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
104 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack &
	Schwarzenbach (1988)
	Flack parameter = $-0.02(1)$

Table 1 Selected geometric parameters (Å, °).

2.530 (1)	Sb1-S2	2.975 (1)
87.1 (1) 64.7 (1) 87.1 (1)	$S1^{i}-Sb1-S2$ $S1^{ii}-Sb1-S2$	150.3 (1) 82.3 (1)
	2.530 (1) 87.1 (1) 64.7 (1) 87.1 (1)	2.530 (1) $Sb1-S2$ 87.1 (1) $S1^{i}-Sb1-S2$ 64.7 (1) $S1^{ii}-Sb1-S2$ 87.1 (1)

Symmetry codes: (i) 1 - y, 1 + x - y, z; (ii) -x + y, 1 - x, z.

Of the 3970 reflections, 2118 were unique reflections and 1582 were Friedel pairs.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Universiti Kebangsaan Malaysia and the National Science Council for R&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662, 190-9609-2801), for supporting this work.

References

Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, ennessee, USA.

Raston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 791-794. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.